3.5.34 \(\int \cot ^6(c+d x) (a+b \tan (c+d x))^2 \, dx\) [434]

3.5.34.1 Optimal result
3.5.34.2 Mathematica [C] (verified)
3.5.34.3 Rubi [A] (verified)
3.5.34.4 Maple [A] (verified)
3.5.34.5 Fricas [A] (verification not implemented)
3.5.34.6 Sympy [A] (verification not implemented)
3.5.34.7 Maxima [A] (verification not implemented)
3.5.34.8 Giac [B] (verification not implemented)
3.5.34.9 Mupad [B] (verification not implemented)

3.5.34.1 Optimal result

Integrand size = 21, antiderivative size = 120 \[ \int \cot ^6(c+d x) (a+b \tan (c+d x))^2 \, dx=-\left (\left (a^2-b^2\right ) x\right )-\frac {\left (a^2-b^2\right ) \cot (c+d x)}{d}+\frac {a b \cot ^2(c+d x)}{d}+\frac {\left (a^2-b^2\right ) \cot ^3(c+d x)}{3 d}-\frac {a b \cot ^4(c+d x)}{2 d}-\frac {a^2 \cot ^5(c+d x)}{5 d}+\frac {2 a b \log (\sin (c+d x))}{d} \]

output
-(a^2-b^2)*x-(a^2-b^2)*cot(d*x+c)/d+a*b*cot(d*x+c)^2/d+1/3*(a^2-b^2)*cot(d 
*x+c)^3/d-1/2*a*b*cot(d*x+c)^4/d-1/5*a^2*cot(d*x+c)^5/d+2*a*b*ln(sin(d*x+c 
))/d
 
3.5.34.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.07 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.10 \[ \int \cot ^6(c+d x) (a+b \tan (c+d x))^2 \, dx=\frac {a b \cot ^2(c+d x)}{d}-\frac {a b \cot ^4(c+d x)}{2 d}-\frac {a^2 \cot ^5(c+d x) \operatorname {Hypergeometric2F1}\left (-\frac {5}{2},1,-\frac {3}{2},-\tan ^2(c+d x)\right )}{5 d}-\frac {b^2 \cot ^3(c+d x) \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},1,-\frac {1}{2},-\tan ^2(c+d x)\right )}{3 d}+\frac {2 a b \log (\cos (c+d x))}{d}+\frac {2 a b \log (\tan (c+d x))}{d} \]

input
Integrate[Cot[c + d*x]^6*(a + b*Tan[c + d*x])^2,x]
 
output
(a*b*Cot[c + d*x]^2)/d - (a*b*Cot[c + d*x]^4)/(2*d) - (a^2*Cot[c + d*x]^5* 
Hypergeometric2F1[-5/2, 1, -3/2, -Tan[c + d*x]^2])/(5*d) - (b^2*Cot[c + d* 
x]^3*Hypergeometric2F1[-3/2, 1, -1/2, -Tan[c + d*x]^2])/(3*d) + (2*a*b*Log 
[Cos[c + d*x]])/d + (2*a*b*Log[Tan[c + d*x]])/d
 
3.5.34.3 Rubi [A] (verified)

Time = 0.91 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.02, number of steps used = 17, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.810, Rules used = {3042, 4025, 3042, 4012, 25, 3042, 4012, 3042, 4012, 25, 3042, 4012, 3042, 4014, 3042, 25, 3956}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^6(c+d x) (a+b \tan (c+d x))^2 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+b \tan (c+d x))^2}{\tan (c+d x)^6}dx\)

\(\Big \downarrow \) 4025

\(\displaystyle \int \cot ^5(c+d x) \left (2 a b-\left (a^2-b^2\right ) \tan (c+d x)\right )dx-\frac {a^2 \cot ^5(c+d x)}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {2 a b-\left (a^2-b^2\right ) \tan (c+d x)}{\tan (c+d x)^5}dx-\frac {a^2 \cot ^5(c+d x)}{5 d}\)

\(\Big \downarrow \) 4012

\(\displaystyle \int -\cot ^4(c+d x) \left (a^2+2 b \tan (c+d x) a-b^2\right )dx-\frac {a^2 \cot ^5(c+d x)}{5 d}-\frac {a b \cot ^4(c+d x)}{2 d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\int \cot ^4(c+d x) \left (a^2+2 b \tan (c+d x) a-b^2\right )dx-\frac {a^2 \cot ^5(c+d x)}{5 d}-\frac {a b \cot ^4(c+d x)}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\int \frac {a^2+2 b \tan (c+d x) a-b^2}{\tan (c+d x)^4}dx-\frac {a^2 \cot ^5(c+d x)}{5 d}-\frac {a b \cot ^4(c+d x)}{2 d}\)

\(\Big \downarrow \) 4012

\(\displaystyle -\int \cot ^3(c+d x) \left (2 a b-\left (a^2-b^2\right ) \tan (c+d x)\right )dx+\frac {\left (a^2-b^2\right ) \cot ^3(c+d x)}{3 d}-\frac {a^2 \cot ^5(c+d x)}{5 d}-\frac {a b \cot ^4(c+d x)}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\int \frac {2 a b-\left (a^2-b^2\right ) \tan (c+d x)}{\tan (c+d x)^3}dx+\frac {\left (a^2-b^2\right ) \cot ^3(c+d x)}{3 d}-\frac {a^2 \cot ^5(c+d x)}{5 d}-\frac {a b \cot ^4(c+d x)}{2 d}\)

\(\Big \downarrow \) 4012

\(\displaystyle -\int -\cot ^2(c+d x) \left (a^2+2 b \tan (c+d x) a-b^2\right )dx+\frac {\left (a^2-b^2\right ) \cot ^3(c+d x)}{3 d}-\frac {a^2 \cot ^5(c+d x)}{5 d}-\frac {a b \cot ^4(c+d x)}{2 d}+\frac {a b \cot ^2(c+d x)}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \int \cot ^2(c+d x) \left (a^2+2 b \tan (c+d x) a-b^2\right )dx+\frac {\left (a^2-b^2\right ) \cot ^3(c+d x)}{3 d}-\frac {a^2 \cot ^5(c+d x)}{5 d}-\frac {a b \cot ^4(c+d x)}{2 d}+\frac {a b \cot ^2(c+d x)}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a^2+2 b \tan (c+d x) a-b^2}{\tan (c+d x)^2}dx+\frac {\left (a^2-b^2\right ) \cot ^3(c+d x)}{3 d}-\frac {a^2 \cot ^5(c+d x)}{5 d}-\frac {a b \cot ^4(c+d x)}{2 d}+\frac {a b \cot ^2(c+d x)}{d}\)

\(\Big \downarrow \) 4012

\(\displaystyle \int \cot (c+d x) \left (2 a b-\left (a^2-b^2\right ) \tan (c+d x)\right )dx+\frac {\left (a^2-b^2\right ) \cot ^3(c+d x)}{3 d}-\frac {\left (a^2-b^2\right ) \cot (c+d x)}{d}-\frac {a^2 \cot ^5(c+d x)}{5 d}-\frac {a b \cot ^4(c+d x)}{2 d}+\frac {a b \cot ^2(c+d x)}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {2 a b-\left (a^2-b^2\right ) \tan (c+d x)}{\tan (c+d x)}dx+\frac {\left (a^2-b^2\right ) \cot ^3(c+d x)}{3 d}-\frac {\left (a^2-b^2\right ) \cot (c+d x)}{d}-\frac {a^2 \cot ^5(c+d x)}{5 d}-\frac {a b \cot ^4(c+d x)}{2 d}+\frac {a b \cot ^2(c+d x)}{d}\)

\(\Big \downarrow \) 4014

\(\displaystyle 2 a b \int \cot (c+d x)dx+\frac {\left (a^2-b^2\right ) \cot ^3(c+d x)}{3 d}-\frac {\left (a^2-b^2\right ) \cot (c+d x)}{d}-x \left (a^2-b^2\right )-\frac {a^2 \cot ^5(c+d x)}{5 d}-\frac {a b \cot ^4(c+d x)}{2 d}+\frac {a b \cot ^2(c+d x)}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 a b \int -\tan \left (c+d x+\frac {\pi }{2}\right )dx+\frac {\left (a^2-b^2\right ) \cot ^3(c+d x)}{3 d}-\frac {\left (a^2-b^2\right ) \cot (c+d x)}{d}-x \left (a^2-b^2\right )-\frac {a^2 \cot ^5(c+d x)}{5 d}-\frac {a b \cot ^4(c+d x)}{2 d}+\frac {a b \cot ^2(c+d x)}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle -2 a b \int \tan \left (\frac {1}{2} (2 c+\pi )+d x\right )dx+\frac {\left (a^2-b^2\right ) \cot ^3(c+d x)}{3 d}-\frac {\left (a^2-b^2\right ) \cot (c+d x)}{d}-x \left (a^2-b^2\right )-\frac {a^2 \cot ^5(c+d x)}{5 d}-\frac {a b \cot ^4(c+d x)}{2 d}+\frac {a b \cot ^2(c+d x)}{d}\)

\(\Big \downarrow \) 3956

\(\displaystyle \frac {\left (a^2-b^2\right ) \cot ^3(c+d x)}{3 d}-\frac {\left (a^2-b^2\right ) \cot (c+d x)}{d}-x \left (a^2-b^2\right )-\frac {a^2 \cot ^5(c+d x)}{5 d}-\frac {a b \cot ^4(c+d x)}{2 d}+\frac {a b \cot ^2(c+d x)}{d}+\frac {2 a b \log (-\sin (c+d x))}{d}\)

input
Int[Cot[c + d*x]^6*(a + b*Tan[c + d*x])^2,x]
 
output
-((a^2 - b^2)*x) - ((a^2 - b^2)*Cot[c + d*x])/d + (a*b*Cot[c + d*x]^2)/d + 
 ((a^2 - b^2)*Cot[c + d*x]^3)/(3*d) - (a*b*Cot[c + d*x]^4)/(2*d) - (a^2*Co 
t[c + d*x]^5)/(5*d) + (2*a*b*Log[-Sin[c + d*x]])/d
 

3.5.34.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3956
Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Log[RemoveContent[Cos[c + d 
*x], x]]/d, x] /; FreeQ[{c, d}, x]
 

rule 4012
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/ 
(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e + f*x] 
)^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a 
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1 
]
 

rule 4014
Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[(a*c + b*d)*(x/(a^2 + b^2)), x] + Simp[(b*c - a 
*d)/(a^2 + b^2)   Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && N 
eQ[a*c + b*d, 0]
 

rule 4025
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^2, x_Symbol] :> Simp[(b*c - a*d)^2*((a + b*Tan[e + f*x])^(m + 
 1)/(b*f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e 
+ f*x])^(m + 1)*Simp[a*c^2 + 2*b*c*d - a*d^2 - (b*c^2 - 2*a*c*d - b*d^2)*Ta 
n[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] 
 && LtQ[m, -1] && NeQ[a^2 + b^2, 0]
 
3.5.34.4 Maple [A] (verified)

Time = 0.87 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.86

method result size
derivativedivides \(\frac {a^{2} \left (-\frac {\left (\cot ^{5}\left (d x +c \right )\right )}{5}+\frac {\left (\cot ^{3}\left (d x +c \right )\right )}{3}-\cot \left (d x +c \right )-d x -c \right )+2 a b \left (-\frac {\left (\cot ^{4}\left (d x +c \right )\right )}{4}+\frac {\left (\cot ^{2}\left (d x +c \right )\right )}{2}+\ln \left (\sin \left (d x +c \right )\right )\right )+b^{2} \left (-\frac {\left (\cot ^{3}\left (d x +c \right )\right )}{3}+\cot \left (d x +c \right )+d x +c \right )}{d}\) \(103\)
default \(\frac {a^{2} \left (-\frac {\left (\cot ^{5}\left (d x +c \right )\right )}{5}+\frac {\left (\cot ^{3}\left (d x +c \right )\right )}{3}-\cot \left (d x +c \right )-d x -c \right )+2 a b \left (-\frac {\left (\cot ^{4}\left (d x +c \right )\right )}{4}+\frac {\left (\cot ^{2}\left (d x +c \right )\right )}{2}+\ln \left (\sin \left (d x +c \right )\right )\right )+b^{2} \left (-\frac {\left (\cot ^{3}\left (d x +c \right )\right )}{3}+\cot \left (d x +c \right )+d x +c \right )}{d}\) \(103\)
parallelrisch \(\frac {-30 a b \ln \left (\sec ^{2}\left (d x +c \right )\right )+60 a b \ln \left (\tan \left (d x +c \right )\right )-6 \left (\cot ^{5}\left (d x +c \right )\right ) a^{2}-15 \left (\cot ^{4}\left (d x +c \right )\right ) a b +10 \left (a^{2}-b^{2}\right ) \left (\cot ^{3}\left (d x +c \right )\right )+30 \left (\cot ^{2}\left (d x +c \right )\right ) a b +30 \left (-a^{2}+b^{2}\right ) \cot \left (d x +c \right )-30 d x \left (a -b \right ) \left (a +b \right )}{30 d}\) \(116\)
norman \(\frac {\left (-a^{2}+b^{2}\right ) x \left (\tan ^{5}\left (d x +c \right )\right )+\frac {a b \left (\tan ^{3}\left (d x +c \right )\right )}{d}-\frac {a^{2}}{5 d}-\frac {\left (a^{2}-b^{2}\right ) \left (\tan ^{4}\left (d x +c \right )\right )}{d}+\frac {\left (a^{2}-b^{2}\right ) \left (\tan ^{2}\left (d x +c \right )\right )}{3 d}-\frac {a b \tan \left (d x +c \right )}{2 d}}{\tan \left (d x +c \right )^{5}}+\frac {2 a b \ln \left (\tan \left (d x +c \right )\right )}{d}-\frac {a b \ln \left (1+\tan ^{2}\left (d x +c \right )\right )}{d}\) \(142\)
risch \(-2 i a b x -a^{2} x +b^{2} x -\frac {4 i a b c}{d}-\frac {2 i \left (-60 i a b \,{\mathrm e}^{8 i \left (d x +c \right )}+45 a^{2} {\mathrm e}^{8 i \left (d x +c \right )}-30 b^{2} {\mathrm e}^{8 i \left (d x +c \right )}+120 i a b \,{\mathrm e}^{6 i \left (d x +c \right )}-90 a^{2} {\mathrm e}^{6 i \left (d x +c \right )}+90 b^{2} {\mathrm e}^{6 i \left (d x +c \right )}-120 i a b \,{\mathrm e}^{4 i \left (d x +c \right )}+140 a^{2} {\mathrm e}^{4 i \left (d x +c \right )}-110 b^{2} {\mathrm e}^{4 i \left (d x +c \right )}+60 i a b \,{\mathrm e}^{2 i \left (d x +c \right )}-70 a^{2} {\mathrm e}^{2 i \left (d x +c \right )}+70 b^{2} {\mathrm e}^{2 i \left (d x +c \right )}+23 a^{2}-20 b^{2}\right )}{15 d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{5}}+\frac {2 a b \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}{d}\) \(245\)

input
int(cot(d*x+c)^6*(a+b*tan(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
1/d*(a^2*(-1/5*cot(d*x+c)^5+1/3*cot(d*x+c)^3-cot(d*x+c)-d*x-c)+2*a*b*(-1/4 
*cot(d*x+c)^4+1/2*cot(d*x+c)^2+ln(sin(d*x+c)))+b^2*(-1/3*cot(d*x+c)^3+cot( 
d*x+c)+d*x+c))
 
3.5.34.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.18 \[ \int \cot ^6(c+d x) (a+b \tan (c+d x))^2 \, dx=\frac {30 \, a b \log \left (\frac {\tan \left (d x + c\right )^{2}}{\tan \left (d x + c\right )^{2} + 1}\right ) \tan \left (d x + c\right )^{5} - 15 \, {\left (2 \, {\left (a^{2} - b^{2}\right )} d x - 3 \, a b\right )} \tan \left (d x + c\right )^{5} + 30 \, a b \tan \left (d x + c\right )^{3} - 30 \, {\left (a^{2} - b^{2}\right )} \tan \left (d x + c\right )^{4} - 15 \, a b \tan \left (d x + c\right ) + 10 \, {\left (a^{2} - b^{2}\right )} \tan \left (d x + c\right )^{2} - 6 \, a^{2}}{30 \, d \tan \left (d x + c\right )^{5}} \]

input
integrate(cot(d*x+c)^6*(a+b*tan(d*x+c))^2,x, algorithm="fricas")
 
output
1/30*(30*a*b*log(tan(d*x + c)^2/(tan(d*x + c)^2 + 1))*tan(d*x + c)^5 - 15* 
(2*(a^2 - b^2)*d*x - 3*a*b)*tan(d*x + c)^5 + 30*a*b*tan(d*x + c)^3 - 30*(a 
^2 - b^2)*tan(d*x + c)^4 - 15*a*b*tan(d*x + c) + 10*(a^2 - b^2)*tan(d*x + 
c)^2 - 6*a^2)/(d*tan(d*x + c)^5)
 
3.5.34.6 Sympy [A] (verification not implemented)

Time = 1.80 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.42 \[ \int \cot ^6(c+d x) (a+b \tan (c+d x))^2 \, dx=\begin {cases} \tilde {\infty } a^{2} x & \text {for}\: c = 0 \wedge d = 0 \\x \left (a + b \tan {\left (c \right )}\right )^{2} \cot ^{6}{\left (c \right )} & \text {for}\: d = 0 \\\tilde {\infty } a^{2} x & \text {for}\: c = - d x \\- a^{2} x - \frac {a^{2}}{d \tan {\left (c + d x \right )}} + \frac {a^{2}}{3 d \tan ^{3}{\left (c + d x \right )}} - \frac {a^{2}}{5 d \tan ^{5}{\left (c + d x \right )}} - \frac {a b \log {\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{d} + \frac {2 a b \log {\left (\tan {\left (c + d x \right )} \right )}}{d} + \frac {a b}{d \tan ^{2}{\left (c + d x \right )}} - \frac {a b}{2 d \tan ^{4}{\left (c + d x \right )}} + b^{2} x + \frac {b^{2}}{d \tan {\left (c + d x \right )}} - \frac {b^{2}}{3 d \tan ^{3}{\left (c + d x \right )}} & \text {otherwise} \end {cases} \]

input
integrate(cot(d*x+c)**6*(a+b*tan(d*x+c))**2,x)
 
output
Piecewise((zoo*a**2*x, Eq(c, 0) & Eq(d, 0)), (x*(a + b*tan(c))**2*cot(c)** 
6, Eq(d, 0)), (zoo*a**2*x, Eq(c, -d*x)), (-a**2*x - a**2/(d*tan(c + d*x)) 
+ a**2/(3*d*tan(c + d*x)**3) - a**2/(5*d*tan(c + d*x)**5) - a*b*log(tan(c 
+ d*x)**2 + 1)/d + 2*a*b*log(tan(c + d*x))/d + a*b/(d*tan(c + d*x)**2) - a 
*b/(2*d*tan(c + d*x)**4) + b**2*x + b**2/(d*tan(c + d*x)) - b**2/(3*d*tan( 
c + d*x)**3), True))
 
3.5.34.7 Maxima [A] (verification not implemented)

Time = 0.38 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.03 \[ \int \cot ^6(c+d x) (a+b \tan (c+d x))^2 \, dx=-\frac {30 \, a b \log \left (\tan \left (d x + c\right )^{2} + 1\right ) - 60 \, a b \log \left (\tan \left (d x + c\right )\right ) + 30 \, {\left (a^{2} - b^{2}\right )} {\left (d x + c\right )} - \frac {30 \, a b \tan \left (d x + c\right )^{3} - 30 \, {\left (a^{2} - b^{2}\right )} \tan \left (d x + c\right )^{4} - 15 \, a b \tan \left (d x + c\right ) + 10 \, {\left (a^{2} - b^{2}\right )} \tan \left (d x + c\right )^{2} - 6 \, a^{2}}{\tan \left (d x + c\right )^{5}}}{30 \, d} \]

input
integrate(cot(d*x+c)^6*(a+b*tan(d*x+c))^2,x, algorithm="maxima")
 
output
-1/30*(30*a*b*log(tan(d*x + c)^2 + 1) - 60*a*b*log(tan(d*x + c)) + 30*(a^2 
 - b^2)*(d*x + c) - (30*a*b*tan(d*x + c)^3 - 30*(a^2 - b^2)*tan(d*x + c)^4 
 - 15*a*b*tan(d*x + c) + 10*(a^2 - b^2)*tan(d*x + c)^2 - 6*a^2)/tan(d*x + 
c)^5)/d
 
3.5.34.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 287 vs. \(2 (114) = 228\).

Time = 1.10 (sec) , antiderivative size = 287, normalized size of antiderivative = 2.39 \[ \int \cot ^6(c+d x) (a+b \tan (c+d x))^2 \, dx=\frac {3 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 15 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 35 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 20 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 180 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 960 \, a b \log \left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right ) + 960 \, a b \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) + 330 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 300 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 480 \, {\left (a^{2} - b^{2}\right )} {\left (d x + c\right )} - \frac {2192 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 330 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 300 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 180 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 35 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 20 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 15 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, a^{2}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5}}}{480 \, d} \]

input
integrate(cot(d*x+c)^6*(a+b*tan(d*x+c))^2,x, algorithm="giac")
 
output
1/480*(3*a^2*tan(1/2*d*x + 1/2*c)^5 - 15*a*b*tan(1/2*d*x + 1/2*c)^4 - 35*a 
^2*tan(1/2*d*x + 1/2*c)^3 + 20*b^2*tan(1/2*d*x + 1/2*c)^3 + 180*a*b*tan(1/ 
2*d*x + 1/2*c)^2 - 960*a*b*log(tan(1/2*d*x + 1/2*c)^2 + 1) + 960*a*b*log(a 
bs(tan(1/2*d*x + 1/2*c))) + 330*a^2*tan(1/2*d*x + 1/2*c) - 300*b^2*tan(1/2 
*d*x + 1/2*c) - 480*(a^2 - b^2)*(d*x + c) - (2192*a*b*tan(1/2*d*x + 1/2*c) 
^5 + 330*a^2*tan(1/2*d*x + 1/2*c)^4 - 300*b^2*tan(1/2*d*x + 1/2*c)^4 - 180 
*a*b*tan(1/2*d*x + 1/2*c)^3 - 35*a^2*tan(1/2*d*x + 1/2*c)^2 + 20*b^2*tan(1 
/2*d*x + 1/2*c)^2 + 15*a*b*tan(1/2*d*x + 1/2*c) + 3*a^2)/tan(1/2*d*x + 1/2 
*c)^5)/d
 
3.5.34.9 Mupad [B] (verification not implemented)

Time = 5.27 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.21 \[ \int \cot ^6(c+d x) (a+b \tan (c+d x))^2 \, dx=\frac {2\,a\,b\,\ln \left (\mathrm {tan}\left (c+d\,x\right )\right )}{d}-\frac {{\mathrm {cot}\left (c+d\,x\right )}^5\,\left ({\mathrm {tan}\left (c+d\,x\right )}^4\,\left (a^2-b^2\right )+\frac {a^2}{5}-{\mathrm {tan}\left (c+d\,x\right )}^2\,\left (\frac {a^2}{3}-\frac {b^2}{3}\right )+\frac {a\,b\,\mathrm {tan}\left (c+d\,x\right )}{2}-a\,b\,{\mathrm {tan}\left (c+d\,x\right )}^3\right )}{d}-\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )+1{}\mathrm {i}\right )\,{\left (a-b\,1{}\mathrm {i}\right )}^2\,1{}\mathrm {i}}{2\,d}-\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )-\mathrm {i}\right )\,{\left (-b+a\,1{}\mathrm {i}\right )}^2\,1{}\mathrm {i}}{2\,d} \]

input
int(cot(c + d*x)^6*(a + b*tan(c + d*x))^2,x)
 
output
(2*a*b*log(tan(c + d*x)))/d - (log(tan(c + d*x) + 1i)*(a - b*1i)^2*1i)/(2* 
d) - (log(tan(c + d*x) - 1i)*(a*1i - b)^2*1i)/(2*d) - (cot(c + d*x)^5*(tan 
(c + d*x)^4*(a^2 - b^2) + a^2/5 - tan(c + d*x)^2*(a^2/3 - b^2/3) + (a*b*ta 
n(c + d*x))/2 - a*b*tan(c + d*x)^3))/d